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Abstract

An inverse geometry problem is investigated to identify the boundary shape of a domain from temperature mea-

surements on the other boundary, where the temperature field is dominated by natural convection. The potential

applications of the present investigation are the determination of a phase change isotherm in the Bridgman crystal

growth or the thermal tomography which detects flaws in materials nondestructively. The inverse problem is posed as a

minimization problem of the performance function, which is the sum of square residuals between calculated and ob-

served temperature, by means of a conjugate gradient method employing the adjoint variable method. The present

method is found to identify the domains reasonably accurately even with noisy temperature measurements.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Domain identification problems arise in various branches of science and engineering. These are a class of

inverse problems [1] and may be solved by various optimization techniques for partial differential equa-

tions. One interesting example is the thermal tomography [2]. The thermal tomography involves charac-

terizing structural flaws caused by corrosion or cracks, which may not be detectable visually. By measuring

temperature at certain locations on the boundary for a given heat flux, one can identify location of the

system boundary, and thus may detect and characterize these structural flaws nondestructively. Another

example is the identification of a phase change isotherm in the Bridgman crystal growth of semiconductor

materials [3]. Since the phase change occurs at a constant temperature, the identification of an isotherm
corresponding to the melting temperature is tantamount to the determination of the phase boundary. Since

the curvature of the interface between the crystal and melt, together with the melt convection, causes radial

segregation of dopants in the crystal, the identification of phase boundary is very important for the quality
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control of the Bridgman process. At last, we may mention the importance of the identification of location of

the phase boundary in the direct solidification processes for cast turbine blades [4], where the velocity of

freezing front is the main process variable that controls the final solidification microstructures. These shape

identification problems are different from the optimal shape design problems which are motivated by

numerous applications to structural, airplane and ship design [5–8].

In the present investigation, we consider some shape identification problems of natural convection

system, where the location of the system boundary is determined from temperature measurements on the

other boundary. After mapping the irregular domains into a reference one using a set of parameters, the
inverse problem is formulated as a parameter optimization problem of the output least-squares criterion,

which is solved by a conjugate gradient method. The governing equations are discretized by a finite volume

method. Although more recent techniques such as the arbitrary mesh method with fully implicit solvers

might have been employed, the finite volume method is still one of the most preferred techniques for solving

the Navier–Stokes equations. The specific system under consideration is the following two-dimensional

domain X with boundaries oXi filled with a Boussinesq fluid (Fig. 1(a)). Natural convection is induced by

the temperature gradient in the system. Governing equations in dimensionless variables may be written as:

r � v ¼ 0: ð1Þ

ov

ot
þ v � rv ¼ �rP þ Prr2vþ RPrT j; ð2Þ

oT
ot

þ v � rT ¼ r2T : ð3Þ

Using superscript asterisk to denote dimensional quantities, the dimensionless variables are defined as

follows

x ¼ x�

d
; y ¼ y�

d
; t ¼ jt�

d2
; v ¼ dv�

j
; T ¼ T � � T �

cold

T �
hot � T �

cold

; P 0 ¼ d2P �

qj2
; ð4Þ

where T � is the temperature, t� is time, v� is the velocity field, P � is the pressure field, j is the thermal

diffusivity, q is the density, d is the characteristic length of the domain. In consistent with the Boussinesq

approximation, we regard the physical properties of the fluid constant except the density in the body force

term, which is represented as a function of temperature. The dimensionless group R is the Rayleigh number

and Pr is the Prandtl number defined as follows:

R ¼ ag
ðT �

hot � T �
coldÞd3

jm
; ð5Þ

(a) (b)

Fig. 1. (a) A general two-dimensional domain in the physical space. (b) Transformed domain in the computational space.
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Pr ¼
m
j
; ð6Þ

where a is the thermal expansion coefficient, g is the gravitational constant and m is the kinematic viscosity.

The inverse problem under consideration is the identification of shapes of some boundaries oXi from

steady-state temperature measurements on the other boundaries. Although the present inverse problems are

steady problems we keep time-derivative terms in Eqs. (2) and (3), since it is easier to solve the unsteady

equation to yield the steady state solution than to solve the steady equations themselves for the Navier–

Stokes problems. Recently a few shape identification problems for the heat conduction system and semi-

conductor devices have been published [9–12], but the shape identification problems for natural convection

system have not been addressed frequently. Although Yang and Zabaras [13] and Park and Chung [14]
consider inverse natural convection problems, these are inverse analyses on fixed domains.

2. System

We solve this shape identification problem after transforming the irregular system domains in the

physical space ðx; yÞ to a fixed square computational domain ðn; gÞ as shown in Fig. 1(b). Then the gov-

erning equations using the dimensionless variables may be written in the computational domain as:

oV i

oni ¼ 0; ð7Þ

ffiffiffi
g

p ov

ot
þ o

oni ðV
ivÞ ¼ o

oni Prgij
ffiffiffi
g

p ov

onj

� �
� o

oni ð
ffiffiffi
g

p
giP Þ þ RPr

ffiffiffi
g

p
T j; ð8Þ

ffiffiffi
g

p oT
ot

þ o

oni ðV
iT Þ ¼ o

oni gij
ffiffiffi
g

p oT

onj

� �
; ð9Þ

where

ffiffiffi
g

p ¼ ox
on

oy
og

� oy
on

ox
og

; ð10Þ

g1 ¼ 1ffiffiffi
g

p i
oy
og

�
� j ox

og

�
; ð11Þ

g2 ¼ 1ffiffiffi
g

p
�
� i oy

on
þ j ox

on

�
; ð12Þ

gij ¼ gi � gj; ð13Þ

V i ¼ ffiffiffi
g

p
gi � v: ð14Þ

The summation is over i ¼ 1; 2 and, n1 ¼ n; n2 ¼ g. The above set of equations, with relevant boundary

conditions, is solved by the finite volume method based on the SIMPLE algorithm [15]. Collocated ar-

rangement of variables is adopted, where all the variables are stored at the same set of grid points and the

same control volumes are used for all variables. Artificial pressure oscillation is prevented by employing the
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Rhie–Chow interpolation scheme [16]. For simplicity, we adopt the following set of elliptic equations [17]

for domain transformation and grid generation. But other grid generation techniques may be employed

without further complications.

ð ffiffiffi
g

p Þ2g11 o
2x

on2
þ 2ð ffiffiffi

g
p Þ2g12 o2x

onog
þ ð ffiffiffi

g
p Þ2g22 o

2x
og2

¼ 0: ð15Þ

ð ffiffiffi
g

p Þ2g11 o
2y

on2
þ 2ð ffiffiffi

g
p Þ2g12 o2y

onog
þ ð ffiffiffi

g
p Þ2g22 o

2y
og2

¼ 0: ð16Þ

The shape identification problems investigated in the present paper are as follows. The shape and location

of the boundaries oX2, oX3 and oX4 are fixed and known. We want to identify the location and shape of the
boundary oX1 from temperature measurements on oX3. The temperatures on the boundaries oX1, oX2, and

oX4 are given, and an adiabatic condition is imposed on the boundary oX3. The three domains shown in

Fig. 2 are investigated in this work. The boundary conditions for Eqs. (7)–(9), (15), and (16) are:

� on oX1; v ¼ 0; T ¼ 1:0; x ¼ 10n; y ¼ F ðxÞ; ð17Þ

� on oX2; v ¼ 0; T ¼ 0:0; x ¼ 10:0; y ¼ 1:5g; ð18Þ

� on oX3; v ¼ 0;
oT
oy

¼ 0:0; x ¼ 10n; y ¼ 1:5; ð19Þ

� on oX4; v ¼ 0; T ¼ 0:0; x ¼ 0:0; y ¼ 1:5g: ð20Þ

The function F ðxÞ in Eq. (17) is the unknown to be determined. In these figures (Figs. 2(a)–(c)), the relevant

boundary conditions and measurement points are also indicated. Figs. 3(a)–(c) show the typical velocity

and temperature fields for these domains. The isotherms are indicated with dashed lines.

(a)

(b)

(c)

Fig. 2. (a)–(c) The domains and boundary conditions for the shape identification problems.
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3. Solution method for the identification problems

The inverse problem of identifying the shape of the domain is posed as a minimization problem of the

following least-squares criterion.

J ¼ 1

2

XMO

m¼1

ðT ðxm; ymÞ � T �ðxm; ymÞÞ2; ð21Þ

where MO is the number of measurement points, ðxm; ymÞ is the mth measurement location, T �ðxm; ymÞ is the
measured steady temperature and T ðxm; ymÞ is the computed steady temperature using the model. We try to

find the shape of the domain defined by the geometric variable F ðxÞ such that the objective function J given
in Eq. (21) is minimized. The minimization of the objective function is done using the conjugate gradient

method [18,19]. The most crucial step in this method is the determination of the gradient function rJðF Þ,
which provides a measure of sensitivity of the objective function to the current geometric variable, F ,
available. In the present investigation, we determine rJ by using the adjoint variable method. The gradient

of the objective function rJ is defined by

dJðF Þ � JðF þ dF Þ � JðF Þ ¼ hrJ ; dF i; ð22Þ

where the bracket h; i denotes the inner product. Depending on the dimensionality of the geometric function

F , we interpret the inner product operation differently. If F is infinite dimensional, i.e., F ¼ F ðnÞ, thenrJ is
also infinite dimensional, and

hrJ ; dF i ¼
Z 1

n¼0

rJðnÞdF ðnÞdn: ð23Þ

On the other hand, when the geometric function F ðnÞ is discretized as

F ðnÞ ¼
XM
m¼1

FmwmðnÞ; ð24Þ

(a)

(b)

(c)

Fig. 3. (a)–(c) Typical velocity and temperature fields for the domains of Figs. 2(a)–(c).
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where wmðnÞ is the mth basis function depicted in Fig. 4, the geometric function becomes finite dimensional

F ¼ ðF1; F2; . . . ; FMÞT ð25Þ

and the corresponding gradient function rJ is given by

rJ ¼ oJ
oF

¼ oJ
oF1

;
oJ
oF2

; . . . ;
oJ
oFM

� �T

ð26Þ

for which the appropriate inner product is

hrJ ; dFi ¼
XM
m¼1

oJ
oFm

� �
ðdFmÞ: ð27Þ

The gradient function rJ can be obtained by introducing the adjoint variables aðn; g; tÞ, rðn; g; tÞ, and
bðn; g; tÞ such that:

J ¼ 1

2

Z tf

0

XMO

m¼1

½T ðxm; ymÞ � T �ðxm; ymÞ�2 dt �
Z tf

0

Z
X
a � ffiffiffi

g
p ov

ot

�
þ o

oni ðV
ivÞ � o

oni Prgij
ffiffiffi
g

p ov

onj

� 	

þ o

oni ð
ffiffiffi
g

p
giP Þ � RPr

ffiffiffi
g

p
T j
�
dXdt þ

Z tf

0

Z
X
r

oV i

oni

� �
dXdt �

Z tf

0

Z
X
b

ffiffiffi
g

p oT
ot

�
þ o

oni ðV iT Þ

� o

oni gij
ffiffiffi
g

p oT

onj

� 	�
dXdt; ð28Þ

where the time integration is performed for a sufficiently long period such that steady state is attained at
t ¼ tf . Although the identification problems under consideration are steady problems as specified by the

objective function, Eq. (21), we introduce time variable in Eq. (28) to derive the unsteady adjoint equations,

because it is easier to solve the unsteady adjoint equation to yield the steady-state solution than to solve the

steady adjoint equations themselves for the Navier–Stokes problems. Taking the variation of J with respect

to F , dJ (cf. Eq. (22)), and integrating dJ by parts and exploiting the boundary conditions, we find that for

the steady problems:

Fig. 4. Basis functions employed to parameterize the unknown boundary shapes.
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dJ ¼
Z

X
ayRPrTd

ffiffiffi
g

p
dX þ

Z
X

�
� oa

on

� �
� o

og
ðuvÞ

� �
þ oa

og

� �
� o

on
ðuvÞ

� �	
dy dX

þ
Z

X

�
� oax

on
op
og

�
þ oax

og
op
on

�
þ
�
� ou
on

or
og

þ ou
og

or
on

�	
dy dX

þ
Z

X

oðTuÞ
on

ob
og

�
� oðTuÞ

og
ob
on

�
dy dX �

Z
X

Pr
oa

on

� �
� ov

on

� ��
þ ob

on

� �
oT
on

� �	
dð ffiffiffi

g
p

g11ÞdX

�
Z

X
Pr

oa

on

� �
� ov

og

� ��
þ ob

on

� �
oT
og

� �	
dð ffiffiffi

g
p

g12ÞdX �
Z

X
Pr

oa

og

� �
� ov

on

� ��

þ ob
og

� �
oT
on

� �	
dð ffiffiffi

g
p

g21ÞdX �
Z

X
Pr

oa

og

� �
� ov

og

� ��
þ ob

og

� �
oT
og

� �	
dð ffiffiffi

g
p

g22ÞdX; ð29Þ

while the adjoint variables aðn; g; tÞ, rðn; g; tÞ and bðn; g; tÞ must satisfy:

oAi

oni ¼ 0; ð30Þ

ffiffiffi
g

p oa

ot
þ o

oni ðV
iaÞ ¼ � o

oni Prgji
ffiffiffi
g

p oa

onj

� �
þ o

oni ð
ffiffiffi
g

p
girÞ � T

o

oni ð
ffiffiffi
g

p
gibÞ � vj

o

oni ð
ffiffiffi
g

p
giajÞ; ð31Þ

ffiffiffi
g

p ob
ot

þ o

oni ðV ibÞ ¼ � o

oni gji
ffiffiffi
g

p ob

onj

� �
� ayRPr

ffiffiffi
g

p �
XMO

m¼1

½T ðx; yÞ � T �ðx; yÞ�dðx� xmÞdðy � ymÞ; ð32Þ

where a ¼ aj ¼ ðax; ayÞT

and Ai ¼ ffiffiffi
g

p
gi � a: ð33Þ

The relevant boundary conditions are:

� n ¼ 0; 1; ax ¼ ay ¼ 0; b ¼ 0; ð34Þ

� g ¼ 0; ax ¼ ay ¼ 0; b ¼ 0; ð35Þ

� g ¼ 1; ax ¼ ay ¼ 0;
ob
og

¼ 0: ð36Þ

Once the set of adjoint equations, (30)–(32), is solved, the variation of the objective function dJ is given as a

function of the geometric variation terms such as dy, dð ffiffiffi
g

p
g11Þ, etc. The geometric variation terms are

obtained by solving the following grid sensitivity equations which are derived from the grid generation
equations (15) and (16).

ð ffiffiffi
g

p Þ2g11 o
2dx

on2
þ 2ð ffiffiffi

g
p Þ2g12 o

2dx
onog

þ ð ffiffiffi
g

p Þ2g22 o
2dx
og2

þ d ð ffiffiffi
g

p Þ2g11

 � o2x

on2
þ 2d ð ffiffiffi

g
p Þ2g12


 � o2x
onog

þ d ð ffiffiffi
g

p Þ2g22

 � o2x

og2
¼ 0; ð37Þ
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ð ffiffiffi
g

p Þ2g11 o
2dy

on2
þ 2ð ffiffiffi

g
p Þ2g12 o

2dy
onog

þ ð ffiffiffi
g

p Þ2g22 o
2dy
og2

þ d ð ffiffiffi
g

p Þ2g11

 � o2y

on2
þ 2d ð ffiffiffi

g
p Þ2g12


 � o2y
onog

þ d ð ffiffiffi
g

p Þ2g22

 � o2y

og2
¼ 0; ð38Þ

� n ¼ 0; 1; dx ¼ 0; dy ¼ 0; ð39Þ

� g ¼ 0; dx ¼ 0; dy ¼ dF ; ð40Þ

� g ¼ 1; dx ¼ 0; dy ¼ 0: ð41Þ

In the above equations, the geometric variation terms can be evaluated by exploiting Eqs. (10)–(13). For

example,

d ð ffiffiffi
g

p Þ2g11

 �

¼ 2
ox
og

� �
odx
og

� �
þ 2

oy
og

� �
ody
og

� �
: ð42Þ

We solve Eqs. (37)–(41) with dF ¼ w1ðnÞ;w2ðnÞ; . . . ;wMðnÞ, where wiðnÞ is the ith basis function depicted in

Fig. 4, to obtain ðdxi; dyiÞT, i ¼ 1; 2; . . . ;M . In the same way as the geometric function is expressed in terms

of the basis functions (cf. Eq. (24)), the geometric variation dF may be written as

dF ¼
XM
m¼1

dFmwmðnÞ: ð43Þ

Since the grid sensitivity equations, Eqs. (37)–(41), are linear, ðdx; dyÞT is obtained easily once

dFmðm ¼ 1; 2; . . . ;MÞ are known.

dx
dy

� �
¼

XM
m¼1

dFm
dxm
dym

� �
: ð44Þ

In this way, all other geometric variation terms are expressed in terms of dFm. For example,

d
ffiffiffi
g

p ¼
XM
m¼1

dFmðd
ffiffiffi
g

p Þm; ð45Þ

dð ffiffiffi
g

p
g11Þ ¼

XM
m¼1

dFmdð ffiffiffi
g

p
g11Þm; ð46Þ

where

ðd ffiffiffi
g

p Þm ¼ odxm
on

� �
oy
og

� �
þ ox

on

� �
odym
og

� �
� odxm

og

� �
oy
on

� �
� ox

og

� �
odym
on

� �
; ð47Þ

dð ffiffiffi
g

p
g11Þm ¼ �

ðd ffiffiffi
g

p Þm
ð ffiffiffi

g
p Þ2

ox
og

� �2
(

þ oy
og

� �2
)

þ 1ffiffiffi
g

p 2
ox
og

� �
odxm
og

� ��
þ 2

oy
og

� �
odym
og

� �	
: ð48Þ
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Exploiting Eqs. (45)–(48), the variation of the objective function given in Eq. (29) may be rewritten as

dJ ¼
XM
m¼1

oJ
oFm

dFm; ð49Þ

where

oJ
oFm

�
Z

X
ayRPrT ðd ffiffiffi

g
p Þm dX þ

Z
X

�
� oa

on

� �
� o

og
ðuvÞ

� �
þ oa

og

� �
� o

on
ðuvÞ

� �	
dym dX

þ
Z

X

��
� oax

on
op
og

þ oax

og
op
on

�
þ
�
� ou
on

or
og

þ ou
og

or
on

�	
dym dX þ

Z
X

oðTuÞ
on

ob
og

�

� oðTuÞ
og

ob
on

�
dym dX �

Z
X

Pr
oa

on

� �
� ov

on

� ��
þ ob

on

� �
oT
on

� �	
dð ffiffiffi

g
p

g11Þm dX

�
Z

X
Prðoa

on
Þ � ov

og

� ��
þ ob

on

� �
oT
og

� �	
dð ffiffiffi

g
p

g12Þm dX �
Z

X
Pr

oa

og

� �
� ov

on

� ��

þ ob
og

� �
oT
on

� �	
dð ffiffiffi

g
p

g21Þm dX �
Z

X
Pr

oa

og

� �
� ov

og

� ��
þ ob

og

� �
oT
og

� �	
dð ffiffiffi

g
p

g22Þm dX: ð50Þ

In this way the gradient functionrJ is discretized as shown in Eq. (26). The discretization ofrJ converts the

infinite dimensional problem into a finite dimensional one, and has an effect of additional regularization as

illustrated in [14]. The theoretical basis for the effects of regularizationbydiscretization iswell explained in [19].

The basic steps in the application of the Fletcher–Reeves version of the conjugate gradient method

applied to the shape identification problems under consideration may be described as follows:
1. Assume F ¼ ðF1; F2; . . . ; FMÞT of F ðnÞ and solve the grid generation equation, Eqs. (15) and (16).

Then, solve the set of governing equations, Eqs. (7)–(9) until steady state.

2. Solve the set of adjoint equations, Eqs. (30)–(32), until steady state is attained.

3. Solve the grid sensitivity equations, Eqs. (37) and (38), with dF ¼ w1ðnÞ;w2ðnÞ; . . . ;wMðnÞ, respec-
tively, to find ðdxi; dyiÞT; i ¼ 1; 2; . . . ;M . Then, all geometric variational terms can be evaluated as il-

lustrated in Eqs. (45) and (46).

4. The gradient function oJ=oF is determined by Eq. (50).

5. The conjugate direction vector at the nth iteration stage is given by

dðnÞ ¼ � oJ
oF

� �ðnÞ

þ undðn�1Þ; ð51Þ

where

uð0Þ ¼ 0; ð52Þ

uðnÞ ¼
oJ=oFð ÞðnÞ; oJ=oFð ÞðnÞ

D E
oJ=oFð Þðn�1Þ

; oJ=oFð Þðn�1Þ
D E ðnP 1Þ: ð53Þ

6. Determine the optimal step length qn

qn ¼ arg min JðFðnÞ � qndðnÞÞ: ð54Þ
7. Set

Fðnþ1Þ ¼ FðnÞ � qndðnÞ: ð55Þ
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8. If hFðnþ1Þ � FðnÞ;Fðnþ1Þ � FðnÞi is less than �, stop. Otherwise, set n ¼ nþ 1, go to step 2.

The one-dimensional optimization over qn in step 6 is performed by using the golden section search [18]

or by employing the following analytic formula

qn ¼
PMO

m¼1 T ðxm; ymÞ � T �ðxm; ymÞð ÞdT ðxm; ymÞPMO

m¼1½dT ðxm; ymÞ�
2

: ð56Þ

This is obtained by assuming a quadratic variation of J with respect to qn. The sensitivity field dT is found

by solving the sensitivity equations with the relevant boundary conditions.

o

oni ðdV iÞ ¼ 0; ð57Þ

ffiffiffi
g

p o

ot
dvþ o

oni ðV
idvÞ ¼ o

oni Prgij
ffiffiffi
g

p odv

onj

� 	
þ Sp þ ffiffiffi

g
p

RPrdT jþ Sv; ð58Þ

ffiffiffi
g

p o

ot
dT þ o

oni ðV
idT Þ ¼ o

oni gij
ffiffiffi
g

p odT

onj

� 	
þ ST; ð59Þ

where dv and dT are the deviational velocity and deviational temperature field, respectively, which indicate

the sensitivity of the velocity and temperature fields with respect to the variation of the geometry dF . The
deviational contravariant velocity is defined by:

dV i ¼ ffiffiffi
g

p
gi � dvþ d:ð ffiffiffi

g
p
giÞ � v ð60Þ

Source terms Sp, Sv and ST in Eqs. (58) and (59) are given by:

Sp ¼ � o

oni ð
ffiffiffi
g

p
gidP Þ � o

oni ðdð
ffiffiffi
g

p
giÞP Þ; ð61Þ

Sv ¼ � o

oni ðdV
ivÞ þ o

oni Prdðgij ffiffiffi
g

p Þ ov
onj

� �
þ

d
ffiffiffi
g

pffiffiffi
g

p
o

oni ðV
ivÞ

�
� o

oni Prgij
ffiffiffi
g

p ov

onj

� 	�
; ð62Þ

ST ¼ � o

oni ðdV
iT Þ þ o

oni dðgij ffiffiffi
g

p Þ oT
onj

� �
þ

d
ffiffiffi
g

pffiffiffi
g

p
o

oni ðV
iT Þ

�
� o

oni gij
ffiffiffi
g

p oT

onj

� 	�
; ð63Þ

where

d
ffiffiffi
g

p ¼ odx
on

oy
og

þ ox
on

ody
og

� ody
on

ox
og

� oy
on

odx
og

ð64Þ

and henceforth. The boundary conditions for the sensitivity equations are

� on oX1; dv ¼ 0; dT ¼ 0; ð65Þ

� on oX2; dv ¼ 0; dT ¼ 0; ð66Þ

� on oX3; dv ¼ 0;
odT
oy

� �
¼ 0; ð67Þ
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� on oX4; dv ¼ 0; dT ¼ 0: ð68Þ

We employ ð40� 20Þ grids for the finite volume method to solve the governing equations, adjoint equations
and sensitivity equations, which is found to be sufficient to resolve the fields.

4. Results

In the present investigation, we employ the simulated experimental data. Namely, we solve the governing

equations, Eqs. (7)–(9), numerically, and adopt the numerical solution at the measurement locations as

experimental data after adding a certain amount of random errors. As a first attempt to test the present
algorithm, we consider the idealized situations where there are no measurement error. The three geometries

depicted in Figs. 2(a)–(c) are investigated, where R¼ 2000.0 and Pr¼ 0.72. Since the dimensionless height of

the domains is 1.5, the actual Rayleigh number is 6750. The bottom boundary oX1 is parameterized with

seven basis functions (cf. Eq. (24)) and temperature is measured at nine equidistant locations on the top

boundary oX3 as depicted in Fig. 2. The initially assumed shapes in the conjugate gradient iterations are the

rectangles as shown in Fig. 2 with dashed lines. The estimation error is defined by

Estimation error ¼ kF ðnÞexact � F ðnÞestimatedk2
kF ðnÞexactk2

; ð69Þ

where k � k2 is the usual L2-norm. Figs. 5(a) and (b) show the convergence rate of the conjugate gradient

method for the case of Fig. 2(a) where the detailed shapes of the identified domain (Fig. 5(a)) with the

corresponding estimation errors (Fig. 5(b)) are depicted. It is shown that almost exact shape is identified in

21 iterations with the estimation error of 0.0658. Figs. 6(a) and (b) show the identified shapes for the case of

Figs. 2(b) and (c) The estimation errors and corresponding iteration numbers required before convergence

are also shown in the same figures.

The effect of number of measurement locations on the accuracy of estimation is investigated. Fig. 7
shows the identified shape for the case of Fig. 2(a) when the number of equidistant measurement locations

on oX3 is increased from the default value of 9–18. Comparing this result with the reference one, Fig. 5,

obtained with nine equidistant measurement locations, it is found that the accuracy of estimation improves

as the number of measurement locations increases. Final consideration is the effect of measurement error on

the accuracy of estimation. Since measurement error is inevitable in all practical situations, it is important

to confirm that the present method still identifies the shape reasonably accurately even if the temperature

measurements are corrupted by noise. Corrupted measurements are generated by adding Gaussian dis-

tributed random noise to the simulated measurements that are the exact numerical solution at the mea-
surement locations. When there are measurement errors, the following discrepancy principle is adopted as

the stopping criterion of the conjugate gradient iteration [20]. Assuming the measurement errors to be the

same for all measurements, Eq. (21) becomes

J � 1

2

XMO

m¼1

r2 ¼ �2; ð70Þ

where r is the magnitude of measurement error at each measurement location. Then the discrepancy
principle for the stopping criterion is taken as

J 6 �2: ð71Þ

If the function J has a minimum value that is larger than �2 the following criterion is used to stop the

iteration.
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JðFðiþ1ÞÞ � JðFðiÞÞ6 �1; ð72Þ

where �1 is a prescribed small number. Figs. 8(a) and (b) show the estimated shapes for the case of Fig. 2(a)

when the relative measurement error is 0.1% (Fig. 8(a)) and 0.3% (Fig. 8(b)), respectively. Comparing these

Fig. 6. Identified shapes for the cases of Figs. 2(b) and (c). The case of (a) Fig. 2(b) and (b) Fig. 2(c).

(a)

(b)

Fig. 5. Variation of the shape (a) and estimation error (b) for the case of Fig. 2(a).
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results with that of Fig. 5, where the measurements are exact, we get the expected conclusion that the

accuracy of estimation deteriorates as the measurement error increases.

5. Conclusion

A method of identifying the boundary shape of a domain, where the temperature field is dominated by

natural convection, from temperature measurements on the other boundary is investigated. After mapping

the irregular domains into a reference one using a set of parameters, the inverse problem is formulated as a

parameter optimization problem of the output least-squares criterion, which is solved by a conjugate

gradient method employing the adjoint variable method. The potential applications of the present inves-

tigation are the thermal tomography, which detects structural flaws caused by corrosion nondestructively,

and the identification of a phase change isotherm in Bridgman growth of semiconductor materials. The

effects of number of measurement locations and measurement errors on the accuracy of estimation are also
investigated. The present method is found to identify the domains reasonably accurately even with noisy

temperature measurements.
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